III SESSIONE | CASE STUDIES

THE HYBRID SOIL WASHING PROCESS FOR THE TREATMENT OF PFAS CONTAMINATED SOILS

Stany Pensaert, R&D Manager | DEME Environmental

ASSOCIAZIONE AMBIENTE. ENERGIA SICUREZZA. RESPONSABILITÀ SOCIALE

OSSERVATORIO PFAS ASSORECA

RIFLESSIONI PER UN APPROCCIO METODOLOGICO

19.09.2024 | H 14.00

REMTECH EXPO 24

FERRARA FIERE

Content

- 01 Origin of PFAS in contaminated soils
- 02 Soil Treatment Experience
- 03 Soil Washing for PFAS
- 04 Case Studies

Origin of PFAS in Contaminated Soils

PFAS Cycle through the Environment

American Water Works Association

Hotspot Areas

Airports: fire fighting areasPFOS major compound

Hotspot Areas

Production sitesPFOS, Gen-X, fluorotelomers,...

BM

Soil Treatment Experience

- Pioneer in soil treatment: since 1993 first soil washing plant in Belgium.
- 200.000 tons/year of mineral waste streams including contaminated soils, spent blasting grit and sweeping waste
- Preferred solution provider for major players in the petrochemical industry in the Port of Antwerp
- Extensive experience with the remediation of emerging contaminants and nonstandard chemical parameters
- Own R&D laboratory for washing tests and treatment tests

Soil Washing for PFAS

Soil Washing for PFAS

Difference with other contaminants

- PFAS in contaminated soils are mainly longer chain molecules and in particular PFOS.
- > PFAS are quite soluble in water (e.g. PFOS 520-570 mg/l)
- > PFAS adsorb very well to organic matter
- > PFAS levels and treatment standards are 1000 to 10000 times lower compared to classic contaminants.

Soil washing of PFAS contaminated soils is based on

- ► Optimizing transfer of PFAS to the process water
- ► Thorough removal of organic matter from the soil as it is a sink for PFAS
- Continuous process water treatment to remove contaminant mass from the process.
- Secondary washing step of gravel and sand with ultrapure water to remove PFAS traces.

Soil Washing for PFAS

Contaminated

Treatment Standards

- Mostly focus on PFOS and PFOA, combined with ∑PFAS
- Concentration targets in most countries. In some countries leaching standards.
- Standards evolve with time...
- Examples:

Flanders:

- ▶PFOS < 3 µg/kg DM
- ▶PFOA < 3 µg/kg DM
- ▶ Σ other PFAS < 8 µg/kg DM
- ► 1/1/2025: leaching \sum_{20} PFAS < 0,1 µg/I DM

Netherlands:
▶PFOS < 3 µg/kg DM
▶PFOA < 7 µg/kg DM
▶∑ other PFAS < 3 µg/kg DM

Design & Validation

Lab Testing: PFAS washing protocol

- PFAS washing protocol focus on sand and process water treatment
- Full PFAS mass balance, TOP Assay optional
- ► Kinetics of PFAS dissolution
- Contribution of organic matter adsorption
- Attrition scrubbing and froth flotation optional extra steps

Case Studies

PFAS Projects

Lab Studies

- ► Airport authorities: Belgium, Netherlands, Sweden, Norway, UK
- Private companies: PFAS producers
- Public authorities

Full Scale Projects

- ► Former General Motors factory Antwerp-Belgium (2021): 35.000 tons
- Oosterweel Link project: 300.000 tons
- Various clients Port of Antwerp: 150.000 tons
- Design, build, operate bespoke soil washing plant at a major European airport: 200.000 tons (2024-2027)

DEME Osservatorio PFAS DEME Proprietary Information | Commercial in confiden 9 Settemine 2024

Norwegian Airport

Relative leachability versus OMC

Washing Results

Visual Assessment Washed Fractions

Mass Balances

- 87 to 99% (based on DM) of the soil can be recovered for reuse in the form of sand and some gravel
- 91 to 97% of the PFAS can be removed in two washing steps
- Additional scrubbing results in > 99% removal

	1.26.1		1		
	Initial	4000/	-		
out (%)		100%	-		
M)		420			_
(%)		100%	103%	PFAS output fractions	
	-		<u> </u>	1	•
	SW01 dry mass vs input (%) PFAS (µg/kg DM)		gravel washed		REMTECH EXPO
			1,76%	1	
			9,4		
	PFAS vs input (%)		0,04%		
	SW01 dry mass vs input (%) PFAS (μg/kg DM)		sand sieved (sand 1)		
			97,7%		
			32,0		
	PFAS vs input (%)		7,45%		
				-	
			SW01	sand upstreamed (sand 2)	
			drv mass vs input (%)	94.6%	
			PFAS (ug/kg DM)	11.0	
			PFAS vs input (%)	2.48%	
				_,,	
			SW01	sand upstream residue	
			dry mass vs input (%)	0.04%	
			PFAS (ug/kg DM)	< 0.48	
			PFAS vs input (%)	0.00%	
				0,0070	
			SW01	fines residue	
			dry mass vs input (%)	0.0%	
			PEAS (ug/kg DM)	6600.0	
			PFAS vs input (%)	0.36%	
				0,0070	
			SW01	process water upstream	
			mass vs input (%)	811.2%	
			PEAS (ug/L)	1 7	
			PFAS vs input (%)	3 28%	
				0,2070	
	SW01		fines residue	1	
	dry mass vs input (%)		0.5%		
	PFAS (µg/kg DM) PFAS vs input (%)		6600.0		
			8 14%		
	. 17.0 701		3,1470	1	
SW01			process water sieve	1	
			1077 00/		
	DEAS (ug/L)		1077,0%		
	PFAS (µg/L)		34,0		
	PFAS vs input (%)		87,19%		

Osservatorio PFAS 19 settembre 2024

SW01

dry mass vs in PFAS (µg/kg D PFAS vs input

Conclusions

- The hybrid soil washing process is capable of removing more than 99 % of PFAS from a sandy soil.
- PFAS upconcentrated in GAC can be destroyed
- PFAS in fines residue safely landfilled
- The washing efficiency seems to be more dependent on the nature of the soil (PSD, OMC,...) than on the PFAS composition.
- Each soil requires testing !

IV SESSIONE | TAVOLA ROTONDA. PFAS: POSSIBILI APPROCCI E CRITICITÀ Modera i lavori, Dario De Andrea | Esperto in temi ambientali

OSPITI:

- *Guido Bonfedi,* Environmental Engineering & Market Development | **Eni Rewind**
- *Giuseppe Bortone*, Direttore Generale | **ARPA Emilia-Romagna**
- Andrea Chiorboli, Direttore Generale | Acque del Chiampo
- *Michele Fratini,* Resp. Area Caratterizzazione e Protezione dei Suoli e Siti Contaminati | **ISPRA**
- *Federica Scaini*, Primo Ricercatore Dipartimento Ambiente e Salute | **ISS**
- Roberta Vallacchi, Consigliera regionale | Partito Democratico della Lombardia

